
! Apple Confidential - Need to Know 1
 Declassify 12/31/91 - Shred to Destroy

AppleTalk Filing Protocol Specification

Version 2.1

Apple Computer, Inc.
February 22, 1991

! Apple Confidential - Need to Know Declassify 12/31/91 - Shred to Destroy

A few extensions to AFP 2.0 (the version of AFP currently used in AppleShare
2.0.1) have been suggested to support extra features in AFP servers as well as new calls that
have been added to the Hierarchical File System for System 7.0. These protocol extensions
will be called AFP 2.1. The AFPVersion string for AFP 2.1 is 'AFPVersion 2.1'.

The new calls that have been added to the protocol are:

• afpGetSrvrMsg enables an AFP client to get a string message from the server.
Note: this call is optional. It does not have to be supported for the server to be
called AFP 2.1 compliant. This document also defines the previously
undocumented AFPUserBytes, the 2-byte attention code sent in an ASP Attention
packet to an AFP client.

• Four calls to support File IDs. File IDs provide a mechanism for applications (and
users) to keep track of a file regardless of whether it has been moved or if its name
has been changed. These four calls are afpCreateID, afpDeleteID, afpResolveID,
and afpExchangeFiles. All these calls are optional (see afpOpenVol and
afpGetVolParms).

• Support for afpCatSearch, which allows searching of the catalog on almost any field
that is returned by PBGetCatInfo. This call is optional (see afpOpenVol and
afpGetVolParms).

Other changes in the behavior of the server to support enhanced security features are
contained in AFP 2.1. These enhancements are optional in AFP 2.1, but support for them
greatly improves the user experience when these new security features are utilized.

In order to accommodate some new features in AFP and HFS, the bitmaps of certain
calls have been augmented. They are:

• New Directory Attributes and Access Rights in afpGetFlDrParms and any call that
uses this bitmap.

• New bit definitions in the Flags word returned by afpGetSInfo.
• New Volume Attributes in afpGetVolParms.

! Apple Confidential - Need to Know 2
 Declassify 12/31/91 - Shred to Destroy

A new User Authentication Method is available for use with AFP 2.1, known as
Two-Way Scrambled. Using this method, the user is not only authenticated to the server,
but the server is authenticated to the user.

In order to accommodate an environment on a local machine in which some portions
of the hierarchical file system are shared (or “exported”) for regular users, while at the
same time the entire hierarchy is available for the local user (and the owner when connected
remotely), the notion of “Blank Access Privileges” was added. A folder with blank access
privileges “inherits” the privileges of the folder in which it is contained.

Furthermore, when a folder is created remotely, the default access privileges
assigned to that folder are different than under AFP 2.0. Now when a user creates a new
folder, the owner is still assigned full privileges, but the enclosing folder’s Group and
World privileges are copied to it.

Lastly, both “User” and “Group” names are now valid in either of the current
“Owner” or “Group” fields. This allows two new situations that were not allowed in
AFP 2.0:

1) a folder can now be owned by more than one user, and
2) a folder can be shared specifically with one user differently than with everyone else.

Blank Access Privileges

AFP 2.1 supports blank access privileges. When a folder has its blank access
privilege bit set, then the other access privilege bits are ignored, and it uses the access
privilege bits of its parent.

This paradigm is useful because folders’ access privileges now behave in a way
which users expect them to; when a folder with blank access privileges is moved around
within a folder hierarchy, it always reflects the access privileges of its containing folder.
However, once the blank access privileges bit has been cleared for a folder, its access
privileges “stick” to that folder, and remain unchanged no matter where the folder is
moved.

Therefore, although blank access privileges are an optional feature of AFP 2.1, it is
highly recommended that this feature be included in your particular AFP 2.1
implementation since it has subtle human interface repercussions.

Two-Way Scrambled User Authentication Method

AFP 2.1 supports a new User Authentication Method in which the workstation is
not only authenticated by the server, but the server is also authenticated by the workstation.
This method uses the same initial steps as the Random Number Exchange UAM, with one
additional last step. The corresponding UAM string is '2-Way Randnum exchange'.

Both the Random Number Exchange and the Two-Way Scrambled UAMs start
with the workstation asking to login to the server. If the login is allowed, the server returns
a random double-long word and an error of afpAuthContinue. The workstation then
encodes the double-long word with its password and sends it back to the server in an
afpLoginCont call. If the encoding was performed correctly, the workstation is
authenticated and noErr is returned. However, for the Two-Way Scrambled method, the

! Apple Confidential - Need to Know 3
 Declassify 12/31/91 - Shred to Destroy

workstation also sends a random double-long word along with its afpLoginCont call, which
the server encodes with what it believes is the user’s password, and returns that resulting
double-long word in the afpLoginCont reply. The workstation compares this response to
what resulted from its encoding of the original double-long word, and if they are the same,
the server is then also authenticated. This avoids the potential for trojan-horse file servers.

Below are the command and reply block formats for the afpLoginCont call when using the
Two-Way Scrambled user authentication method.

The Two-Way Scrambled UAM is not available for use with the afpPwdChange
call, nor is it required. If the client is concerned about authenticating the server, they will
have already logged in to the server with the Two-Way Scrambled UAM. Since the client
must already be authenticated to call afpPwdChange, the client is assured that the server is
the one they expect.

New Bitmap Definitions

Directory Attributes and Access Rights in afpGetFlDrParms

In order to accommodate the ability to export folders (as opposed to only entire
volumes in AppleShare 2.0.1), new bit definitions have been added to the Directory
Attributes word for afpGetFlDrParms. The entire directory bitmap is reproduced below,
with the new bits for AFP 2.1 in bold. The new bits are:

IsExpFolder (bit 1) This folder is a share point. This folder, and all folders
under it, should give feedback to the local user that access
privileges are valid (i.e., tabbed folders, drop box folder
icons, enable the “Get Privileges” (System 6.0) or
“Sharing...” (System 7.0) menu items). All folders
outside of the shared area do not show access privileges
on the local machine (although they may still possess

! Apple Confidential - Need to Know 4
 Declassify 12/31/91 - Shred to Destroy

valid access privilege information, which only a super-
user can see or modify).

Mounted (bit 3) This share point is mounted by some regular user (i.e., a
user without “All Privileges”). The icon for such a
folder will give feedback to the user of the local machine
that this folder is not only a share point, but that a remote
user currently has it mounted.

InExpFolder (bit 4) This folder is in a shared (exported) area of the folder
hierarchy. This folder, and all folders under it, should
give feedback to the local user that access privileges are
valid. In addition, it is not allowed for this folder to be
shared, since it is not allowed to have a share point within
another share point.

In order to accommodate blank access privileges, a new bit definition has been
added to the Access Rights longword for afpGetFlDrParms. The entire access rights
longword is reproduced below, with the new bit for AFP 2.1 in bold. The new bit is:

BlankAccessPrivileges (bit 28)
This folder has Blank access Privileges and will mirror the
access privileges of its enclosing folder.

! Apple Confidential - Need to Know 5
 Declassify 12/31/91 - Shred to Destroy

! Apple Confidential - Need to Know 6
 Declassify 12/31/91 - Shred to Destroy

Flags word in afpGetSInfo

In order to accommodate the (optional) new features of AFP 2.1, some new bit
definitions have been added to the Flags word for afpGetSInfo. The entire flags word is
reproduced below, with the new bits for AFP 2.1 in bold. The new bits are:

DontAllowSavePassword (bit 2)
The workstation should not allow the user to save their
password for boot mounting purposes. The item
selection dialog may still allow the user to save their
name, but when this bit is set, the button to allow the user
to save their name and password will not be displayed.

SupportsServerMessages (bit 3)
Since server messages are an option in AFP 2.1, this
allows servers to specify whether or not this optional
feature is supported.

Volume Attributes in afpGetVolParms

In order to accommodate the new HFS calls in System 7.0, some new bit definitions
have been added to the volume attributes word for afpGetVolParms. The entire attributes
word is reproduced below, with the new bits for AFP 2.1 in bold. The new bits are:

HasVolumePasswords (bit 1)
This volume supports volume passwords. Volume
passwords were supported in prior versions of AFP; now
the volume attributes reflect this information.

SupportsFileIDs (bit 2)
This volume supports File IDs. In general, if File IDs
are supported on one volume, they will be supported on
all volumes, but this allows the server to be more selective
if necessary.

! Apple Confidential - Need to Know 7
 Declassify 12/31/91 - Shred to Destroy

SupportsCatSearch (bit 3)
This volume supports afpCatSearch calls. Since
afpCatSearch is optional in AFP 2.1, this allows the
server to make this capability available on a per-volume
basis.

SupportsBlankAccessPrivileges (bit 4)
This volume supports blank (mirrored) access privileges.
Blank access privileges are discussed above.

New Security Features

AFP 2.1 has been augmented with a number of new security features. They are known as
Minimum Password Length, Password Expiration, and Maximum Failed Login Attempts.
These features are described below:

Minimum Password Length
It is now possible to specify the minimum length for a user’s password. This

length is specified using some administrative program. If the user’s password is too short,
they will get an afpPwdTooShort error upon logging in. The client code should put up an
explanatory dialog, and then allow the user to change their password. The afpPwdChange
call will continue to fail with an afpPwdTooShort error until a password of at least the
specified length is submitted.

The administrative program should be intelligent enough to not allow the
administrator to give passwords to users which are too short, otherwise these users’ first
login attempt will be dissatisfying, if not confusing. Whether or not the administrative
program should alert the administrator when passwords for existing users are too short (as
might happen when the administrator changes the minimum password length from 4 to 8) is
up to the developer of such administrative programs.

The maximum password length is still 8.

Password Expiration
It is now possible to specify the period of time during which a user must change

their password. This time can be specified using some administrative program. If the user
changes their password before the password expiration time expires, the password
expiration timer will be reset. However, if they do not change their password before the

! Apple Confidential - Need to Know 8
 Declassify 12/31/91 - Shred to Destroy

password expiration time expires, their afpLoginCont call will return afpPwdExpired error.
At this point they are logged in (i.e., their session is open), but they are not yet authenticated,
and the only command they are allowed to perform is afpPwdChange. Once they
successfully change their password, they are authenticated and can proceed as normal. Note
that any other calls they make before they change their password will result in an
afpUserNotAuth error.

If the administrator would like to give a user an account which becomes inactive
after a certain period of time, they can set the password expiration time to that period of
time, and then disallow the password to be changed. When the time expires, the user will no
longer be able to connect to the server.

In order to keep the user from circumventing the spirit of this feature, there is a new
error returned by the afpPwdChange call, afpPwdSameErr, which disallows the user from
performing a change password when their new password is the same as their old password.
The afpPwdChange call will return afpPwdSameErr only if the password expiration feature
is enabled.

Maximum Failed Login Attempts
It is now possible to specify a maximum number of consecutive failed login

attempts before the user’s account is disabled. This count can be specified by some
administrative program. The count is reset to zero after every successful login. Then, for
every failed login attempt without an interceding successful login, the count is incremented.
When the maximum failed login attempt is reached, the user’s login is disabled. Any
attempts to login after the user’s login is disabled will result in an afpParmErr indicating
that the user is unknown. The administrator will need to be notified to enable the user’s
account again. In this way, the administrator is alerted to potential intrusion attempts.

New AFPUserBytes definitions

The AFPUserBytes are the 2-byte attention code sent in an ASP Attention packet to the
AFP client. In order to accommodate some new features in AFP 2.1 (such as server
message) and new capabilities in the workstation code (auto-reconnect), the AFPUserBytes
were augmented as described below.

The AFPUserBytes are defined as follows:

! Apple Confidential - Need to Know 9
 Declassify 12/31/91 - Shred to Destroy

The Attention Code bits for the AFPUserBytes are defined as follows with the new bit
definitions for AFP 2.1 in bold:

The bit numbers for the Attention Code bits are defined as follows:

bit 15 Shutdown or Attention bit. Used when either the server is being
shutdown or when a user(s) are being disconnected.

bit 14 Server Crash bit. The server has detected some internal error, and
the session will close immediately with minimal flushing of files.
There may be some data loss. This is never accompanied by a server
message. This condition is high unlikely.

bit 13 Server Message bit. There is a server message that the client should
request using the afpGetSrvrMsg call with a MsgType of “Server”
(see below). the client should request the message as soon as
possible after receiving this attention, or else the server message it
receives could be outdated.

bit 12 Don’t Reconnect bit. This bit is set when a user is disconnected so
that the client’s reconnect code does not attempt to reconnect the
session. This bit is not set for normal server shutdowns, nor when
the server crashes. And it obviously is not set when the server loses
power or where there is a break in the network cabling, because in
these cases this attention is never sent out. This mechanism allows
administrators to disconnect users (and not allow them to reconnect),
but also allows them to shutdown the server for backup purposes,
bring it back up again, and allow all those clients to transparently
reconnect. This bit is ignored except for when the number of
minutes is 0.

The valid bit combinations are the following:

1000 The server is shutting down or the user will be disconnected in the
designated number of minutes. There is no message accompanying
this shutdown. The workstation may reconnect if desired. This code
may be used upon server shutdown (i.e., quitting file service).

1001 The server is shutting down or the user will be disconnected in the
designated number of minutes. There is no message accompanying
this shutdown. The workstation ought not reconnect. This is the
code used upon user disconnection (i.e., selecting an intruder and
disconnecting them).

1010 The server is shutting down or the user will be disconnected in the
designated number of minutes. There is a message accompanying

! Apple Confidential - Need to Know 10
 Declassify 12/31/91 - Shred to Destroy

this shutdown. The workstation should immediately submit an
afpGetSrvrMsg call to receive and display the message. The
workstation may reconnect if desired. This code may be used upon
server shutdown (i.e., quitting file service).

1011 The server is shutting down or the user will be disconnected in the
designated number of minutes. There is a message accompanying
this shutdown. The workstation should immediately submit an
afpGetSrvrMsg call to receive and display the message. The
workstation ought not reconnect. This is the code used upon user
disconnection (i.e., selecting an intruder and disconnecting them).

0100 The server is going down immediately (possibly due to some
internal error) and can only perform minimal flushing. Number of
minutes is ignored. There is never a message accompanying such an
attention code.

0010 The server has a server message available for this workstation. The
workstation should immediately submit an afpGetSrvrMsg call to
receive and display the message. The extended bitmap is reserved
for Apple internal use only.

0011 Reserved. The extended bitmap is reserved for Apple internal use
only.

0001 Reserved. The extended bitmap is reserved for Apple internal use
only.

0000 Reserved. The extended bitmap is reserved for Apple internal use
only.

! Apple Confidential - Need to Know 11
 Declassify 12/31/91 - Shred to Destroy

afpGetSrvrMsg (38 or $26)

afpGetSrvrMsg enables an AFP client to get a string message from the server. This call is
made by the client to receive shutdown, user, and login messages from the server.
Normally, the server will send an attention to the client when these messages are available.
However, the client may make the afpGetSrvrMsg call at any time. A nil string is returned if
no message is available.

The afpGetSrvrMsg parameters are:

Inputs MsgType (int) Type of server message:
0 = login
1 = server

MsgBitmap (int) Bitmap indicating what information to pass
with the server message (currently this is
only the message string itself) See below
for bitmap structure.

Outputs MsgType (int) Type of server message:
0 = login
1 = server

MsgBitmap (int) Bitmap indicating what information was
passed.

SrvrMessage (str) String message from the server.
FPError (long)

Errors afpCallNotSupported afpGetSrvrMsg not implemented by Server
or AFP version before 2.1.

afpUserNotAuth The user was not logged in.
 afpBitmapError The bitmap specified has unrecognized bits

set.

Rights The client must be logged onto the server to receive server message
notification and to issue this request. Other than that, there are no
special access rights required to issue this call.

The login (0) MsgType is only used for one kind of message and that is:

Login: This allows for a message to be sent to a client at login time. The
workstation may query the server for a login message at login time.
If the workstation opts not to ask for the login message, it need not
request it. If there is no login message, the afpGetSrvrMsg will
simply return a zero-length string, and nothing need be displayed.
By allowing the workstation to query for the login message at any
time, the message may be displayed whenever it is convenient for the
workstation to do so.

! Apple Confidential - Need to Know 12
 Declassify 12/31/91 - Shred to Destroy

The server (1) MsgType is used for two kinds of messages and they are:

Shutdown: In addition to sending an attention when the server is going to
shutdown, a message can be sent explaining, for example, why the
server is going down, how long it will be down, etc. The workstation
is made aware that a shutdown message is available by the server
setting the “Server Message” bit in the Attention Code along with
the “Shutdown” bit.

User: allows for a message to be sent to a specified user or users. The
workstation is made aware that a user message is available by setting
the “Server Message” bit in the Attention Code. Workstations
implementing older AFP versions simply ignore this bit.

The maximum size of any of these messages is 200 bytes including the length byte (an
Str199). The attention mechanism currently being used has been augmented to let the
workstation know that there is a server message. The client then requests (via
afpGetSrvrMsg) the message from the server.

! Apple Confidential - Need to Know 13
 Declassify 12/31/91 - Shred to Destroy

afpCreateID (39 or $27)

As stated previously, file IDs provide a means to keep track of a file even if its name or
location changes. This call creates a unique file ID for a specified file. (Note: the scope of
file IDs is limited to the files on a volume. They cannot be used across volumes.)

The afpCreateID parameters are:

Inputs VolumeID (int) The ID of the volume on which the file ID
is to be created.

DirectoryID (long) The ID of the directory in which the file ID
is to be created.

PathType (byte) Path type of the pathname:
1 = short name
2 = long name

PathName (str) String name of the file that is the target of
the file ID (i.e., the filename of the file for
which you want to create the file ID).

Outputs FileID (long) File ID that was created for the specified
file.

FPError (long)

Errors afpCallNotSupported AFP version before 2.1.
afpObjectNotFound The target file does not exist.
afpIDExists A file ID already exists for this file. The

FileID is returned in the FileID field.
afpObjectTypeErr Object defined was a directory not a file
afpAccessDenied User does not have the rights listed below

or the volume has not been made available
to the workstation with an afpOpenVol call.

Rights The caller must have See Files rights to issue this call.

Notes The user must have previously called afpOpenVol for this volume.

! Apple Confidential - Need to Know 14
 Declassify 12/31/91 - Shred to Destroy

File ID

Reply
CreateID command

0

Volume ID

Directory ID

Pathname

Command

PathType

! Apple Confidential - Need to Know 15
 Declassify 12/31/91 - Shred to Destroy

afpDeleteID (40 or $28)

afpDeleteID invalidates all instances of the specified file ID.

The afpDeleteID parameters are:

Inputs VolumeID (int) The ID of the volume on which the file ID
is to be invalidated.

FileID (long) File ID which is to be invalidated.

Outputs FPError (long)

Errors afpCallNotSupported AFP version before 2.1.
afpObjectNotFound The target file does not exist (file ID is

deleted anyway).
afpIDNotFound File ID was not found.
afpObjectTypeErr Object defined was a directory not a file.
afpAccessDenied User does not have the rights listed below

or the volume has not been made available
to the workstation with an afpOpenVol call.

Rights The caller must have See Files and Make Changes rights to issue this
call.

Notes The user must have previously called afpOpenVol for this volume.

DeleteID command
0

Volume ID

File ID

Command

! Apple Confidential - Need to Know 16
 Declassify 12/31/91 - Shred to Destroy

afpResolveID (41 or $29)

afpResolveID returns parameters for the file referred to by the specified file ID. These
parameters can be any of those specified in the afpGetFlDrParms call.

The afpResolveID parameters are :

Inputs VolumeID (int) The ID of the volume on which the file ID
is located.

FileID (long) File ID which is to be resolved.
ResultBitmap (int) Bitmap describing which parameters are to

be returned (see below for bitmap structure)

Outputs ResultBitmap (int) Copy of input parameter.
Parameters requested
FPError (long)

Errors afpCallNotSupported AFP version before 2.1.
afpIDNotFound File ID was not found.
afpObjectTypeErr Object defined was a directory, not a file.
afpBadIDErr FileID number is not a defined FileID.
afpAccessDenied User does not have the rights listed below

or the volume has not been made available
to the workstation with an afpOpenVol call.

Rights The caller must have See Files rights to issue this call.

Notes The user must have previously called afpOpenVol for this volume.

! Apple Confidential - Need to Know 17
 Declassify 12/31/91 - Shred to Destroy

Long Name

File Bitmap
ØØ

Short Name

Finder Info
Backup Date

Mod Date
Create Date

Parent Directory ID
Attributes

Rsrc Fork Length
Data Fork Length

File Number

Ø

ProDOS FileType

Ø

Result Bitmap

Result Parameters

Reply
ResolveID command

0

Volume ID

FileID

Command

Result Bitmap

! Apple Confidential - Need to Know 18
 Declassify 12/31/91 - Shred to Destroy

afpExchangeFiles (42 or $2A)

afpExchangeFiles is used to preserve existing file IDs when an application wishes to
perform the “Save As...” or “Save” functions. Both files to be changed are specified.
They must exist on the same volume. File IDs do not have to exist on the files to be
exchanged. The files can be either opened or closed.

The afpExchangeFiles parameters are :

Inputs VolumeID (int) The ID of the volume on which the two files
are located.

SrcDirID (long) The ID of the directory that contains the
source file.

DestDirID (long) The ID of the directory that contains the
destination file.

SrcPathType (byte) Path type of the source pathname:
1 = short name
2 = long name

SrcPathName (str) String name of the source file.
DestPathType (byte) Path type of the destination pathname:

1 = short name
2 = long name

DestPathName (str) String name of the destination file.

Outputs FPError (long)

Errors afpCallNotSupported AFP version before 2.1.
afpObjectNotFound The target file does not exist.
afpDiffVol The files that are specified exist on different

volumes.
afpObjectTypeErr Object defined was a directory not a file.
afpObjectLocked The file was locked.
afpSameObjectErr The source file is the same as the

destination file.
afpAccessDenied User does not have the rights listed below

or the volume has not been made available
to the workstation with an afpOpenVol call.

Rights The caller must have See Files and Make Changes rights to both files
to issue this call.

Notes The user must have previously called afpOpenVol for this volume.

The example below shows the results of an afpExchangeFiles between the two files “Blue”
and “Red”. Notice that only the file name, parent directory ID, and FileID, and creation
dates are exchanged. Byte range locks and deny modes still apply to the same file reference
number and data.

! Apple Confidential - Need to Know 19
 Declassify 12/31/91 - Shred to Destroy

RefNum
FileName
Parent DirID
FileID
Length
Creation Date
Modification Date
RangeLock
DenyModes

202
Red
32

222
961

Feb 1982
May 1982

25..30
None

Catalog Information

Data
RedRedRedRedRedRedRedRedR
edRedRedRedRedRedRed

Data
BlueBlueBlueBlueBlueBlueBl
ueBlueBlueBlueBlueBlueBlue
BlueBlue

RefNum
FileName
Parent DirID
FileID
Length
Creation Date
Modification Date
RangeLock
DenyModes

100
Red
32

222
962

Feb 1982
April 1981

0..10
DenyWrite

Catalog Information
RefNum
FileName
Parent DirID
FileID
Length
Creation Date
Modification Date
RangeLock
DenyModes

100
Blue

31
121
962

Jan 1981
April 1981

0..10
DenyWrite

Catalog Information

Data
BlueBlueBlueBlueBlueBlueBl
ueBlueBlueBlueBlueBlueBlue
BlueBlue

RefNum
FileName
Parent DirID
FileID
Length
Creation Date
Modification Date
RangeLock
DenyModes

202
Blue

31
121
961

Jan 1981
May 1982

25..30
None

Catalog Information

Data
RedRedRedRedRedRedRedRedR
edRedRedRedRedRedRed

Before: After:

! Apple Confidential - Need to Know 20
 Declassify 12/31/91 - Shred to Destroy

ExchangeFiles command
0

Command

Volume ID

SrcDirID

DestDirID

Src PathType

Src Pathname

Dest PathType

Dest Pathname

! Apple Confidential - Need to Know 21
 Declassify 12/31/91 - Shred to Destroy

afpCatSearch (43 or $2B)

afpCatSearch allows applications to “efficiently” search an entire volume for files which
match a specified criteria. This criteria includes any fields in the file and/or directory
bitmaps that are defined for the afpGetFlDrParms call. Information parameters for the
matching files and directories is returned. These parameters can also be any of those
specified in the afpGetFlDrParms call.

The afpCatSearch call’s parameters are:

Inputs VolumeID (int) The ID of the volume on which the file ID
is located.

ReqMatches (long) The maximum number of matches to return.
Reserved (long) Reserved (must be zero).
CatPosition (16 bytes) Current position in the catalog
FileRsltBitmap (int) The fields in the File parameters that are to

be returned; this field is the same as File
Bitmap in the afpGetFlDrParms call (with
some restrictions explained below).

DirRsltBitmap (int) The fields in the Dir parameters that are to
be returned; this field is the same as
Directory Bitmap in the afpGetFlDrParms
call (with some restrictions explained
below).

RequestBitmap (long) The fields in the File/Dir parameters that are
to be searched on (bitmap below).

Specification1 Search criteria lower bounds and values.
Specification2 Search criteria upper bounds and masks.

Outputs CatPosition (16 bytes) Current position in the catalog.
FileRsltBitmap (int) Copy of the input bitmap.
DirRsltBitmap (int) Copy of the input bitmap.
ActualCount (long) How many matches were actually found.
Results An array of records that describe the

matches that were found.
FPError (long)

Errors afpCallNotSupported AFP version before 2.1
afpCatalogChanged The catalog has changed and CatPosition

may be invalid.
afpParmErr Input parameters are not valid.
afpEofError No more matches.
afpAccessDenied The volume has not been made available to

the workstation with an afpOpenVol call.

Rights No special access rights are needed to issue this call, however, to see
all the files and/or folders that match the specified criteria, the caller
must have See Files/See Folders rights to them. Folders without See
Files/See Folders rights are skipped by the search.

Notes The user must have previously called afpOpenVol for this volume.

CatPosition is a 16 byte field in which the first word signifies whether it denotes a “real”
catalog position or hint. If the first word is zero, afpCatSearch should start from the

! Apple Confidential - Need to Know 22
 Declassify 12/31/91 - Shred to Destroy

beginning. If non-zero, CatPosition is a “real” catalog position and afpCatSearch will pick
up from this entry.

Specification1 and Specification2 are used together to specify the search parameters. These
parameters are packed in the same order that the bits are set in the request bitmap. All
variable length parameters (name, for example) are put at the end of each specification
record. An offset is stored in the parameters to indicate where the actual variable length
parameter is located. This offset is measured from the start of the specification parameters
(not including the length and filler bytes). Results are packed in the same way.

The fields in Specification1 and Specification2 have different uses:

• In the name field, Specification1 holds the the target string and Specification2 must
always have a nil name field.

• In all date and length fields, Specification1 holds the lowest value in the target range
and Specification2 holds the highest value in the target range.

• In file attributes and Finder Info fields, Specification1 holds the target value, and
Specification2 holds the bitwise mask that specifies which bits in that field in
Specification1 are relevant to the current search.

afpCatSearch returns the error afpEofError only when it has reached the end of the volume
directory tree. For example, if the workstation requests 10 matches, the server may return
only 4 matches with no error. The workstation should then make a request for 6 (10 - 4)
more matches using the same CatPosition that was received in the previous reply. This
process continues until the original requested matches are received or an afpEofError is
returned.

afpCatSearch will return files and or directories depending on the FileRsltBitmap and
DirRsltBitmap fields. If the FileRsltBitmap field is zero, afpCatSearch will assume that you
are not searching for files. Likewise, if the DirRsltBitmap field is zero, afpCatSearch will
assume that you are not searching for directories. If both fields are non-zero, afpCatSearch
will return both files and directories. Note that if you are searching for both files and
directories, certain restrictions apply on what fields afpCatSearch will search on (see below).

! Apple Confidential - Need to Know 23
 Declassify 12/31/91 - Shred to Destroy

Valid Bitmaps For afpCatSearch:

The only valid bits for the FileRsltBitmap and DirRsltBitmap fields are the LongName and
Parent Directory ID bits.

Valid ResultBitmap Bits

0 0 0 0 0 0

0

Long Name
Parent Directory ID

0 0

00 0 0 0

RequestBitmap:

afpCatSearch can search for the following information when searching for directories only.

0 0 0 0 0 0 0

0

Offspring Count

Long Name
Finder Info

Backup Date
Modification Date

Creation Date
Parent Directory ID

Attributes

Valid Directory Bits

afpCatSearch can search for the following information when searching for files only.

! Apple Confidential - Need to Know 24
 Declassify 12/31/91 - Shred to Destroy

Valid File Bits

0 0 0 0 0 0

0

Data Fork Length
Resource Fork Length

Long Name
Finder Info

Backup Date
Modification Date

Creation Date
Parent Directory ID

Attributes

afpCatSearch can search for the following information when searching for directories and
files.

Valid Directory & File Bits

0 0 0 0 0 0

0

Long Name
Finder Info

Backup Date
Modification Date

Creation Date
Parent Directory ID

0 0

0

Attributes Bits:

The only valid bits that can be searched for in the Attributes parameter are the inhibit bits.
For files that’s, DeleteInhibit, RenameInhibit, and WriteInhibit. For directories that’s,
DeleteInhibit and RenameInhibit. You cannot search on Attributes when searching for files
and directories.

! Apple Confidential - Need to Know 25
 Declassify 12/31/91 - Shred to Destroy

CatPosition

Directory Bitmap

CatSearch command
0

Volume ID

Command Reply

File Bitmap

CatPosition

Parameters

Requested Matches

0
(Reserved)

Request Bitmap

Spec 2 (if any)

Spec 1

ActCount

Struct Length

0

File/Dir Flag

A null byte will be added to each
structure if necessary to make the
length of the structure even.

File Result Bitmap

Dir Result Bitmap

Spec Struct

Struct Length

0

The low order word of Request Bitmap is
equivalent to the File/Dir Bitmaps in
GetFileDirParms. The high bit of the
high word is = (1 if searching on partial
name, 0 if full name)

! Apple Confidential - Need to Know 26
 Declassify 12/31/91 - Shred to Destroy

New Function Codes

The following new function codes have been defined for AFP 2.1. Each function code is a
16-bit integer sent in the packet high-byte first.

Decimal value Hex value AFP function

38 $0026 afpGetSrvrMsg
39 $0027 afpCreateID
40 $0028 afpDeleteID
41 $0029 afpResolveID
42 $002A afpExchangeFiles
43 $002B afpCatSearch

New Result Codes

The following new result codes have been defined for AFP 2.1. Each result codes is a
4-byte long word.

Decimal Hex FPError Description

-5034 $FFFFEC56 afpIDNotFound Returned when trying to delete a File ID
that doesn’t exist.

-5035 $FFFFEC55 afpIDExists Returned when trying to create a File ID
for a file that already has a File ID.

-5036 $FFFFEC54 afpDiffVol Returned when the two files that are to
be exchanged by afpExchangeFiles
exist on different volumes.

-5037 $FFFFEC53 afpCatalogChanged Returned when the catalog has changed
while doing an afpCatSearch. The
CatPosition may have become invalid.

-5038 $FFFFEC52 afpSameObjectErr Returned when an afpExchangeFiles is
on the same file.

-5039 $FFFFEC51 afpBadIDErr Returned when an afpResolveID is
performed on a non-existent FileID.

-5040 $FFFFEC50 afpPwdSameErr Returned when the user attempts to
change their password to the same
password as they previously had.

-5041 $FFFFEC4F afpPwdTooShort Returned when the user attempts to
change their password to a password
which is shorter than the server’s
minimum password length.

-5042 $FFFFEC4E afpPwdExpired Returned when the user’s password has
expired, and the user is required to
change their password. The user may
login, but may only perform the
afpPwdChange call.

! Apple Confidential - Need to Know 27
 Declassify 12/31/91 - Shred to Destroy

Decimal Hex FPError Description

-5043 $FFFFEC4D afpInsideSharedErr The folder being shared is inside a
shared folder OR the folder contains a
shared folder and is being moved into a
shared folder OR the folder contains a
shared folder and is being moved into
the descendent of a shared folder.

-5044 $FFFFEC4C afpInsideTrashErr The folder being shared is inside the
trash folder OR the shared folder is
being moved into the trash folder OR
the folder is being moved to the trash
and it contains a shared folder.

